Notes on the convergence of trapezoidal - rule quadrature

نویسنده

  • Steven G. Johnson
چکیده

Numerical quadrature is another name for numerical integration, which refers to the approximation of an integral ́ f (x)dx of some function f (x) by a discrete summation ∑wi f (xi) over points xi with some weights wi. There are many methods of numerical quadrature corresponding to different choices of points xi and weights wi, from Euler integration to sophisticated methods such as Gaussian quadrature, with varying degrees of accuracy for various types of functions f (x). In this note, we examine the accuracy of one of the simplest methods: the trapezoidal rule with uniformly spaced points. In particular, we discuss how the convergence rate of this method is determined by the smoothness properties of f (x)—and, in practice, usually by the smoothness at the end­ points. (This behavior is the basis of a more sophisticated method, Clenshaw-Curtis quadrature, which is essentially trapezoidal integration plus a coordinate transforma­ tion to remove the endpoint problem.) For simplicity, without loss of generality, we can take the integral to be for x ∈ [0,2π], i.e. the integral ˆ 2π I = f (x)dx, 0

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fractional Trapezoidal Rule Type Difference Scheme for Fractional Order Integro-differential Equation

A fractional trapezoidal rule type difference scheme for fractional order integro-differential equation is considered. The equation is discretized in time by means of a method based on the trapezoidal rule: while the time derivative is approximated by the standard trapezoidal rule, the integral term is discretized by means of a fractional quadrature rule constructed again from the trapezoidal r...

متن کامل

Generalized Differential Quadrature Method for Vibration Analysis of Cantilever Trapezoidal FG Thick Plate

This paper presents a numerical solution for vibration analysis of a cantilever trapezoidal thick plate. The material of the plate is considered to be graded through the thickness from a metal surface to a ceramic one according to a power law function. Kinetic and strain energies are derived based on the Reissner-Mindlin theory for thick plates and using Hamilton's principle, the governing equa...

متن کامل

A trapezoidal rule error bound unifying the Euler–Maclaurin formula and geometric convergence for periodic functions

The error in the trapezoidal rule quadrature formula can be attributed to discretization in the interior and non-periodicity at the boundary. Using a contour integral, we derive a unified bound for the combined error from both sources for analytic integrands. The bound gives the Euler–Maclaurin formula in one limit and the geometric convergence of the trapezoidal rule for periodic analytic func...

متن کامل

On Spectral Accuracy of Quadrature Formulae Based on Piecewise Polynomial Interpolation

Abstract. It is well-known that the trapezoidal rule, while being only second-order accurate in general, improves to spectral accuracy if applied to the integration of a smooth periodic function over an entire period on a uniform grid. More precisely, for the function that has a square integrable derivative of order r the convergence rate is o ( N−(r−1/2) ) , where N is a number of grid nodes. ...

متن کامل

FUZZY INTEGRO-DIFFERENTIAL EQUATIONS: DISCRETE SOLUTION AND ERROR ESTIMATION

This paper investigates existence and uniqueness results for the first order fuzzy integro-differential equations. Then numerical results and error bound based on the left rectangular quadrature rule, trapezoidal rule and a hybrid of them are obtained. Finally an example is given to illustrate the performance of the methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010